Evaluation of the environmental impact on metal artifacts using electrochemistry and grazing incidence XRD

Virginia Costa - IRRAP/France Michel Dubus - C2RMF/France

environmental impact

(cup Sn-Pb / wood showcase)

ancient bronze / new rubber floor

evaluation?

NO_x, SO₂, H₂S, COS, CH₃COOH, HCOOH

Synergy of environmental factors

particulate matter

> relative humidity

limits?

damage to materials?

 \Rightarrow

exposure of metallic coupons

project

3-electrode arrangement i = f(E)

reduction of surface products:

apply $-E \Rightarrow$ measure i

= i x t = charge (C) \Leftrightarrow mass (g) \Leftrightarrow tarnishing rate

how to assign a peak to a given compound?

XRD

Ag₂S Ag₃CuS₂ (jalpaite) 72:14:14 (Ag,Cu)₂S (mckinstryite) 61:24:15 Cu_2O

reduction curves

0.0 --0.5 i (mA/cm²) CI Ag - Ag 92.5 - Ag 80 -1.5 – -2.0 -500 -500 -1500 -1000 0 $E (mV_{SHE})$

XRD

AgCI AgCI $Cu_2(OH)_3CI$ clinoatacamite CuO

reduction curves

-2 i (mA/cm²) Acet -5 Ag - Ag 92.5 - Ag 80 -6 ·Cu 0 -500 -1000 500 -1500 $\mathsf{E}\;(\mathsf{mV}_{\mathsf{SHE}})$

XRD

(CH₃COO)₂Cu.H₂O

 $(CH_{3}COO)_{2}Cu.H_{2}C$

(CH3COO)2Cu.H2O

 Cu_2O

reduction curves

XRD

case study : Chateau-Musée Dieppe

room (2) H B

outside (6)

sterling Ag coupons

Cu coupons

Pb coupons

- electrochemical technique is quite sensitive, evidencing even tarnishing layers, 'invisible' to XRD
- both techniques are complementary to identify the nature of the surface compound
- results showed the importance of the situation regarding the environmental impact
- the tarnishing rate increases
 room (side B) ⇒ room (side H) ⇒ outdoor
- particulate matter (side H) seems catalyse selective corrosion