The British Museum

Investigating the performance and suitability of various coatings as barriers to off-gassing from medium density fibreboard (MDF)

G Bertolotti, C Korenberg, R Stacey

IAQ 2016: Indoor Air Quality in heritage and historic environments 3-4 March 2016 - Birmingham, UK

Outline

- Project background
- Selection of liquid "sealants" for MDF
- Testing methodology
- Preliminary results

Online survey about "sealing" MDF: current practices in cultural heritage institutions

Online Survey 'Coatings for wood components inside museum showcases (in the same airspace of objects)' July 10 – Sept 30, 2015

83 validated survey respondents

"Sealing" MDF: an unsolved problem that is still worth investigating

83% of respondents use wood components in showcases in the same airspace as the objects

Liquid sealants are used to seal wood in displays of different duration

The majority of survey respondents employs acrylic coatings, known to be poor VOC barriers, to seal MDF

Chemical class	Number of respondents
ACRYLICS	23
Dacrylate 103-1	16
URETHANES	5
EPOXIES	1
Number of respondents using liquid coatings	34

Requirements for liquid sealants

- 1. No off-gassing
- 2. Good barrier to MDF off-gassing
- 3. Safe for users
- 4. Paintable
- 5. Within the **budget** of temporary exhibitions, possibly also at institutions with limited financial resources
- 6. Available in a large number of countries

The Oddy test is the most popular way to assess sealant off-gassing

The Oddy test has many limitations:

- No identification of the VOCs
- Accelerated ageing
- Subjectivity of the evaluation

- Issues with reproducibility of results
- Limited sensitivity and range of VOCs

SPME-GC/MS allows the identification of the volatile compounds off-gassed

Solid Phase Micro Extraction

 solvent-free sampling, extraction, concentration and introduction into the GC

Gas Chromatography Mass Spectrometry

- Quantification
- Identification

SPME field samplers allow the measurement of the VOCs emitted by coated and uncoated MDF samples

CAR/PDMS-coated fiber: sensitivity for acetic acid

Experimental procedure

1. Screening of the coatings

- 1. Oddy test
- 2. SPME-GC/MS (vials in autosampler)

2. Evaluation of the 'sealing' effectiveness

Comparison of the emissions coated vs uncoated MDF by SPME-GC/MS (field sampling from desiccators)

3. Optimization of the application

Range of products tested

Chemistry	Number	Reasons for selection	
Acrylic and acrylic copolymers	12 products	 Paintable, widely available, used in museums Advertised as with low emissions and/or as able to block emissions from wood 	
2-pack solvent-based polyurethane-acrylic	2 products	- Manufacturers' recommendation	
2-pack water-based polyurethane	4 products	 Expected good barrier Manufacturers' recommendation 	
1-pack water-based polyurethane	1 product	Expected good barrierNo mixing issues	
Ethylene-vinyl acetate (EVA)	1 product	 Advertised as with low emissions and/or as able to block emissions from wood 	
2-pack epoxy	3 products	Expected good barrierUsed by another museum	

Powder-coated MDF: an option to investigate

Epoxy powder-coating reduced MDF emissions of formaldehyde by 99%, total VOCs by 94%

Barry A, Corneau D (2004). Effectiveness of barriers to minimize VOC emissions including formaldehyde. http://www.ecobind.com/research/Effecitveness_of_B arriers_Phase_I.pdf

Product tested: Epoxy-polyester hybrid

No restrictions on shape

All products passed the Oddy test except 2 water-based acrylics and 1 epoxy

The use of an autosampler improves the quality of the SPME-GC/MS screening of the sealants

- Precise extraction time
- Immediate exposure of the fibre in the injector after needle introduction (no peak splitting)
- Reproducibility of SPME fibre desorption in the GC injector

DVB-CAR/PDMS-coated fiber: wide range of VOCs

1 week is the optimal incubation time to screen the coatings by SPME-GC/MS (autosampler)

Self-crosslinking waterborne acrylic transparent sealer

Sprayed by supplier to c. 120-140 µm wet film thickness

Passed the Oddy test

MSDS: (2-methoxymethylethoxy)propanol

An identical chromatogram was obtained after 1 and 2 week incubation

15 min seems the optimal extraction time to screen the coatings by SPME-GC/MS

INLET	
Mode	splitless
Desorption T	240°C
Conditioning T	250°C
Conditioning time	20 min
Pressure	11.4 psi
Purge flow	20.0 ml/l
Desorption time	1 min
COLUMN	
Flow	1.5 ml/min

	TRANSFER LINE		
	Temperature	230°C	
-	DETECTOR		
	Temperature	250°C	
200	MS ACQUISITION		
-	Mode	scan	
114	Low mass	29	
	High mass	400	
D)	MS source	230°C	
1	MS Quad	150°C	

Products in the same class emit different compounds and in different amounts

9.1

Ingredients listed in the MSDS of product 23:

- 2-butoxyethanol 2.5-5%
- aliphatic polyisocyanate 50-100%
- 2-butoxyethyl acetate 5-10%
- hexamethylene diisocyanate <0.5%

Ingredients listed in the MSDS of product 8:

- 2-(2-butoxyethoxy)ethanol 1-5%
- hydrophilic, aliphatic polyisocyanate 60-80%
- n-methyl-2-pyrrolidone 2.5-10%
- paraffins (petroleum), normal C>10 1-2.5%
- polyfunctional isocyanate 50-75%
- hexamethylen-1,6-diisocyanate <0.1%

Optimal sampling and analysis method to assess the barrier effectiveness of the sealants

INLET		
Mode	splitless	
Desorption T	250°C	:
Cleanup T	300°C	
Cleanup time	20 min	
Pressure	11.4 psi	
Purge flow	20.0 ml/l	
Desorption time	1 min	ea.
Total flow	24.0 ml/min	ƙar
COLUMN		eal
Flow	1.5 ml/min	
TRANSFER LINE		
Temperature	230°C	
DETECTOR		
Temperature	250°C	
MS ACQUISITION		
Mode	SIM	
lons m/z	43 and 60	
Cycles/sec	4.53	
Resolution	Low	
EMV mode	Gain factor: 1	
MS source	230°C	
MS Quad	150°C	

Acetic acid peak area at different incubation

Incubation: 1 week Extraction: 2 hours

- Incubation 2 weeks -Extraction 1 hour
- Incubation 1 week -Extraction 2 hours
- Incubation 2 weeks -Extraction 2 hours

Acetic acid was the compound selected to assess sealant barrier effectiveness

Schieweck A (2009). Airborne Pollutants in Museum Showcases – Material emissions, influences, impact on artworks . PhD thesis. Hochschule für Bildende Künste Dresden.

High acetic acid concentrations are detected in modern museum showcases Acetic acid is the VOC off-gassed in the highest amount by the ZF-MDF used in this project

hexanal

acetic acid furfural formic acid chloroform

camphene

DC M

aceton

VOCs emitted in higher amount by Medite Ecologique (9 mm thick)

(2 weeks incubation, 1 h extraction)

Methodology designed to evaluate of the barrier effectiveness of the coatings:

1 – cut, sand the edges of ZF-MDF samples, fit hook

2– pre-condition samples for 10 days (RH 50 ± 10%)

3– analysis of VOCs of uncoated MDF after 1 week incubation

5– analysis of VOCs of the coated samples after 1 week incubation 4– application of the coating(3 layers by brush) and 30-daydrying

6– determination of the reduction of the acetic acid peak area coated/uncoated

Acknowledgements

- Exhibition Workshop (British Museum)
- Preventive conservators (British Museum)
- Survey respondents
- Akzo Nobel, mdfcoaters
- FINSA and RP Panels

THE CLOTHWORKERS'